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Solar Wind at 1 AU

Plasma mainly protons and electrons (~4% Helium), Np ~ 3
cm3

T~10°K
B~5nT
Beta ~ 1

Coulomb collision scale ~0.3 to 3 AU (basically
collisionless)



Interplanetary Turbulence in a Solar Wind High Speed Stream
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lon Pickup for Perpendicular Magnetic Fields: Mass Loading
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Spectral Density (nT*/Hz)

Power Spectra of Turbulence at 3 Different Comets

Pump wave at the H,0 group ion cyclotron frequency
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The Waveforms at 3 Different Comets
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Helicity

Not shown
All three comets different
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Rosetta Comet Churyumov-Gerasimenko Power Spectra

Total Magnetic Field 11-21-2015 Staring 6:47:45
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The NASA/ESA Ulysses Mission:
First Mission Over the Sun’s Poles

Ulysses
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polar coronal
holes during the
declining phase
of solar cycle

The Solar Wind at Different HelioLatitudes
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Note large magnetic
decreases without
increases

Alfvén Waves over the Southern Solar Pole
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Interplanetary Alfvén Waves

Ulysses
.o June 14, 1994 (Day 165) 0000 - 2400 UT
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General Features of the Interplanetary Medium

Alfvén waves are the predominant wave mode in the interplanetary medium. Hardly any
other wave mode of significance has been noted.

The waves are highly nonlinear.

The interplanetary medium is highly compressive (MDs). The field magnitude mainly
decreases, not increases.



Following Landau and Lifschitz, 1960
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Not found in space plasmas. Will not discuss further

Adapted in Tsurutani et al., NWCSP, Hada and Matsumoto, 1997



MHD Shock Subcategories

 Shocks*: Fast (V, >V,
Intermediate (V. om < Vs < Vi)
Slow (Vi < Vs <V,

sonic mterm)

*The shock normal is first determined. Then Rankine-Hugoniot relations are
used to get the shock velocity along the normal.

Shocks: Forward
Reverse

(see Petschek, Rev. Mod. Phys, 1958; Tsurutani et al. JASTP, 2011)



What Type of Shocks Are Detected in Interplanetary Space?

SHOCK

Fast Forward Shock
/

ICME/DRIVER GAS
SHEATH
(shocked slow solar wind)

Blast wave (undriven) shocks have not been
detected. However closer to the Sun will it be different?

Tsurutani et al. JGR 1988



CAWSES | 7-8 NOV, 2004

Fast Forward Shocks
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RDs or TDs (DDs) Rate of 1 or 2/hr

Tangential Discontinuity

side 2

Tsurutani et al., Non Waves Chaos Space, Hada, Matsumoto eds, 1997
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“Directional Discontinuity” (Either RD or TD)
Criteria: Automatic Selection by Computer

« AB/B_ > 0.5 (Tsurutani and Smith, JGR, 1979)

« 0 =cosine! (B, x B,/|B,||B,|) >30° (Lepping and Behannon,
JGR, 1986)



E. Smith (JGR 1973a,b) Method of Separating
RDs from TDs
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B, is the larger field magnitude
on either side of the discontinuity

Adapted for the Smith criteria
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The NASA/ESA Ulysses Mission

Ulysses

First Solar Orbit
1997

North Polar Pass '
Jun-Sep 1995

Earth Orbit
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Ulysses Ecliptic Plane:
Discontinuities and High Speed Streams

when Ulysses reaches the
highest latitudes, ~100 DDs/
day.
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What Do These Nonlinear Alfvén Waves Look Like?

Ulysses

(They Are Not Sinusoidal)
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Analogy of Spherical Waves to Planar \Waves

Planar Waves Spherical Waves

Circular
Polarization

The perturbation
vector rotates in the
surface of a plane

Elliptical
Polarization

Linear/Arc
Polarization

The wave direction of
propagation k is in the minimum
variance direction.

Tsurutani et al., Plas. Phys. Cont. Fus. 1997; RG, 1999



The wave (phase) steepening process is creating a wave spectrum

The front edge contributes a high frequency component

The trailing part contributes longer period components (period
doubling)



What Is the Magnetic Compressibility in the
Interplanetary Medium?



3 Examples of Magnetic Decreases
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There have been many suggestions on what causes MDs.
All agree that they are not part of the Alfven wave itself



The Relationship between Alfvén waves and MDs

nonlinear Alfvén waves \\\\\\

GRL, 2002
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The Smith Discontinuity Phase Space Plot for MDs

Ulysses South Pole
Days 242-268 1994
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Distribution of Protons Tinside mo/T outside vo Ratios
Ulysses North Pole

Ulysses - Days 208-216, 1995
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Our interpretation is that MDs are created by the Ponderomotive Force associated with the steepened
Edges of the Alfven waves

Tsurutani et al. GRL 2002b



Local lon Heating Causes Growth of Plasma Waves

Proton cyclotron waves

Ulysses - 2001 Day 286
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Ulysses - 2001 Day 280
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Mirror mode waves generated by T_/T, > 1 instability



27 Jul 1995 (day 208)
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Scenario

The ions (and electrons) are heated by the Ponderomotive Force associated

with the steepening of the Alfvén waves (Dasgupta et al. GRL 2003). This is the
dissipation process of the Alfvén waves.

Magnetic decreases (MDs) are created by the diamagnetic effect of the

heated ions (and electrons) (Tsurutani et al. GRL 2002a, b). The heated plasma
“pushes out” the ambient fields.

Can these Alfvenic structures be intermediate shocks? They are steepened
and they show dissipation.

The picture is actually more complicated. The edges of the MDs have been
suggested to be slow shocks by Farrugia et al.



How Fast Are the Alfven Waves and MDs Evolving?
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Rate of Phase Steepening

Event (Day) MD-ACE/ MD Cluster
33-34 -

43 4.4

50 58

S51(a) 5.0

51(b) 14.5

76-77 21.3

77 5.5

MDs and Alfvén waves are evolving rapidly in time and space!



What Are These Discontinuities at the
Edges of Alfvén Waves? Scenario

Alfvén wave phase-steepen into rotational discontinuities
As they steepen further, they will form intermediate shocks

As the Alfven waves dissipate they form MDs, which are
nonpropagating structures.

The sharp edges of the MDs may be slow shocks

Since slow shocks propagate slowly, they may be misinterpreted
as tangential discontinuities



What is the Source of the Alfven Waves?

It used to be thought that supergranual circulation at the Sun
was the source.

However with Alfvén waves shown to being spherical in
nature (close to the source) and shown to evolve rapidly,
local generation must also be occurring.

Hellinger and Travnicek (2008, 2011, 2013) have suggested
the oblique fire hose instability with several sources of free
energy.



Summary of Interplanetary High Speed Solar
Wind “Alfvénic Turbulence”

Phase-steepening of Alfvén waves place wave power into higher and lower frequencies at the
same time. The high frequency component is similar to wave breaking. The low frequency
component is period doubling.

The arc polarized Alfvén waves split into two parts. Both parts are coherent.

The Alfvén waves are spherical in nature. They are continuously being generated in the solar
wind, replacing dissipated energy.

The dissipation of the waves by the Ponderomotive Force are creating nonpropagating
magnetic compressions (MDs), i.e., the compressional part of the interplanetary medium.

Speculation: Intermediate and slow shocks are present and are a major part of the turbulence.



Thanks for You Attention.

The End



Effects of Magnetic Compressibility Has on Solar
Flare Energetic lons: A New Concept Called
Nonresonant Particle Scattering



Nonresonant Energetic Particle-Structure Interactions

Proton Gyromotion

Magnetic
Decrease (MD)

3 : : Tsurutani et al., NPG, 1999
r = particle gyroradius

a = MD radius (assume circular cross-section, constant field B,,p)

d = “impact parameter”



Particle Cross-field diffusion

OI

!

The amount of cross-field transport in this particle- MD interaction is the distance between
0 and 0”. We will call this distance A.



Geometry Used to Get A as a Function of r, B, Byp, @aand d

Proton Gyromotion

Magnetic
|« d Decrease (MD)

Y

By Is the ambient magnetic field strength
By IS the magnetic field strength inside the MD



An Analytical Expression for Cross Field Diffusion

D. = (A?)/ At where At is the time between collisions

(M —1)*[2a, N B
D, = 2M + 3] a® + 3M>r?
L = o NPAE | 5 Mo HET M)
n (a® — M?r?)? — [Al‘[(M—l)(a — Mr?)]?
[M(M —1)(a2 — Mr2)]? (2M — 1)a? — M?r2

In the above, M = B_ /B,



How does one make an accurate
calculation of cross-field diffusion?

Monte Carlo (statistical) calculations

DaCosta et al. Astrophys. J., 2013, INPE PhD thesis



Runs

A proton Kkinetic energy Is selected. Many runs are made with
this same energy.

Each proton interacts with 100 MDs. Each MD is selected
randomly (the characteristics of the MDs determined by data
analyses).

This (above) is run 1,000 times, getting 1,000 values of A;

The 1,000 values of A; are used to empirically calculate the
cross field diffusion rates.



100 keV protons diffuse across the magnetic field
at 11% of the Bohm rate
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Summary

*MDs can lead to rapid ( > 0.1Dg,,) cross-field diffusion of ~1 MeV
protons. This may account for the rapid and broad dispersal of solar flare
particles.

*The flare particles associated with the enormous flare that occurred
recently on the backside of the Sun was detected at both Stereo spacecraft
and the Earth, indicating a 360° longitudinal spread. How else other than
rapid cross field diffusion can explain this?



Alfvén Waves and Geomagnetic
Activity
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Earth's Magnetosphere

Sun

Solar
L3 Wind

IMF: Interplanetary
Magnetic Field

»~ Southward
component of IMF

The principal cause of energy transfer from the solar wind to the magnetosphere during
magnetic storms is magnetic reconnection (Dungey, Phys Rev. 1961;
Echer et al. JGR 2008).



First time chorus, PC5s and relativistic electrons shown together

Relativistic electrons
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Chorus 1s now considered as the
primary mechanism of ~100 keV
electron acceleration to ~ MeV
energies:

Inan et al.,JGR,1978; Horne and Thorne, GRL
1998, 2003; Summers et al., JGR 1998, 2007;
Horne et al., JGR 2003a, GRL 2003b; Omura et
al. JGR 2007; Thorne et al. JGR 2005, Nature
2013



Relativisitic E > 0.6, > 2.0 and >4.0 MeV Electron Acceleration
at L = 6.6 during HILDCAAs

HILDCAAs (1995-2008)
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With this new result, we can now “predict” when relativistic electrons

will be accelerated, thus protecting Earth-orbiting satellites.
Hajra et al. ApJ 2015



Scenario

Magnetic reconnection associated with the Alfven waves
cause 10-100 keV electron injections in the midnight sector
of the magnetosphere.

The 10-100 keV anisotropic electrons generate
electromagnetic plasma waves called “chorus”.

The chorus waves accelerate the ~100 keV electrons to
~MeV energies.



Final Comments

« How could ~1 to 2 hr period interplanetary Alfven waves lead
to the generation of ~ kHz chorus and ~ MeV electrons?

 This is a multistep physical process and not at all obvious.

 Detailed analyses need to be done at each step and it is the
combination of lots of separate efforts that lead to
understanding.



